Ant Colony Optimization

## Swarm Intelligence (SI)

- Collective behavior of decentralized, self-organized systems. (G.Beni and J.Wang (1989, cellular robotics)



## Swarm Intelligence

- Collective system capable of accomplishing difficult tasks in dynamic and varied environments without any external guidance or control and with no central coordination
- Achieving a collective performance which could not normally be achieved by an individual acting alone
(ex)
Ant colony optimization (ACO) algorithm,
Artificial bee colony (ABC) algorithm,
Artificial immune systems (AIS),
Particle swarm optimization (PSO),
........


## Ant Colony Optimization

- A probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs.
- A member of swarm intelligence methods, and it constitutes some metaheuristic optimization
- Initially proposed by Marco Dorico in 1992 in his PhD thesis
- Aims to search for an optimal path in a graph, based on the behavior of ants seeking a path between their colony and a source of food.


## Ant Colony Optimization

| Problem name | Authors | Algorithm name | Year |
| :---: | :---: | :---: | :---: |
| Traveling salesman | Dorigo, Maniezzo \& Colorni | AS | 1991 |
|  | Gamberdella \& Dorigo | Ant-Q | 1995 |
|  | Dorigo \& Gamberdella | ACS \&ACS 3 opt | 1996 |
|  | Stutzle \& Hoos | MMAS | 1997 |
|  | Bullnheimer, Hartl \& Strauss | $\mathrm{AS}_{\text {rank }}$ | 1997 |
|  | Cordon, et al. | BWAS | 2000 |
| Quadratic assignment | Maniezzo, Colorni \& Dorigo | AS-QAP | 1994 |
|  | Gamberdella, Taillard \& Dorigo | HAS-QAP | 1997 |
|  | Stutzle \& Hoos | MMAS-QAP | 1998 |
|  | Maniezzo | ANTS-QAP | 1999 |
|  | Maniezzo \& Colorni | AS-QAP | 1994 |
| Scheduling problems | Colorni, Dorigo \& Maniezzo | AS-JSP | 1997 |
|  | Stutzle | AS-SMTTP | 1999 |
|  | Barker et al | ACS-SMTTP | 1999 |
|  | den Besten, Stutzle \& Dorigo | ACS-SMTWTP | 2000 |
|  | Merkle, Middenderf \& Schmeck | ACO-RCPS | 1997 |
| Vehicle routing | Bullnheimer, Hartl \& Strauss | AS-VRP | 1999 |
|  | Gamberdella, Taillard \& Agazzi | HAS-VRP | 1999 |

## Ant Colony Optimization

| Problem name | Authors | Algorithm name | Year |
| :--- | :--- | :--- | :--- |
| Connection-oriented | Schoonderwood et al. | ABC | 1996 |
| network routing | White, Pagurek \& Oppacher | ASGA | 1998 |
|  | Di Caro \& Dorigo | AntNet-FS | 1998 |
| Connection-less | ABC-smart ants | 1998 |  |
| network routing | Di Caro \& Dorigo | AntNet \& AntNet-FA | 1997 |
| Subramanian, Druschel \& Chen | Regular ants | 1997 |  |
| Sequential ordering | Heusse et al. | CAF | ABC-backward |
| Graph coloring | Gamberdella\& Dorigo | HAS-SOP | 1998 |
| Shortest common supersequence | Michel \& Middendorf | ANTCOL | 1998 |
| Frequency assignment | Maniezzo \& Carbonaro | AS_SCS | 1997 |
| Generalized assignment | Ramalhinho Lourenco \& Serra | ANTS-FAP | 1997 |
| Multiple knapsack | Leguizamon \& Michalewicz | MMAS-GAP | 1998 |
| Optical networks routing | Navarro Varela \& Sinclair | AS-MKP | 1998 |
| Redundancy allocation | Liang \& Smith | ACO-VWP | 1998 |
| Constraint satisfaction | Solnon | 1999 |  |

## Ant's Foraging Behavior

- Experiments with Argentine ants (Goss et.al, 1989)
- Ants go from the nest to the food source and backwards
- after a while, the ants prefer the shortest path from the nest to the food source
- stigmercy:
- the ants communicate indirectly laying pheromone trails and following trails with higher pheromone
- length gradient $\rightarrow$ pheromone will accumulate on the shortest path

nest


## Ant's Foraging Behavior



## Double Bridge Experiments

- Deneubourg et. al., 1990

1) Branches of equal length

$$
-r=l_{l}^{l} / l_{s}=1
$$

- ants converges to one single path
$>$ Initial random fluctuation 의 효과
$>$ Autocatalytic or positive feedback process




## Double Bridge Experiments

2) Branches of different length (1)

- $r={ }^{l_{l}} / l_{s}=2$
- ants converges to the short branch
- Initial random fluctuation 의 효과가 줄어듬
- Positive feedback to shorter branch
- Shorter branch -> Higher level of pheromone -> faster accumulation of pheromone on shorter branch -> ....




## Double Bridge Experiments

3）Branches of different length（2）
－$r={ }_{l}^{l_{l}} l_{s}=2$
－Short branch were added after 30 min
－the great majority of ants select the long branch
－High pheromone concentration
－Slow evaporation of pheromone
＞Autocatalytic（自動觸媒）behavior


## Double Bridge Experiments

- Stochastic Model
- Probability of choosing a branch

$$
p_{i s}(t)=\frac{\left(t_{s}+\varphi_{i s}(t)\right)^{\alpha}}{\left(t_{s}+\varphi_{i s}(t)\right)^{\alpha}+\left(t_{s}+\varphi_{i l}(t)\right)^{\alpha}}
$$

$$
p_{i s}(t)+p_{i l}(t)=1
$$

$p_{i a}(t)$ : probability that an ant arriving at decision point $i \in\{0,1\}$ selects branch $a \in\{s, l\} \quad$ (s. short, l. long)
$\varphi_{i a}(t)$ : total amount of pheromone at instant $t$
$t_{s}$ : traverse time on short branch
$r t_{s}$ : traverse time on long branch
$\alpha=2$

- Pheromone evaporation

$$
\begin{array}{lc}
\mathrm{d} \varphi_{i s} / \mathrm{d} t=\psi p_{j s}\left(t-t_{s}\right)+\psi p_{i s}(t), & (i=1, j=2 ; i=2, j=1) \\
\mathrm{d} \varphi_{i l} / \mathrm{d} t=\psi p_{j l}\left(t-r \cdot t_{s}\right)+\psi p_{i l}(t), & (i=1, j=2 ; i=2, j=1)
\end{array}
$$

$\psi$ : ants per second cross the bridge in each direction

## Double Bridge Experiments

- Monte Carlo simulation

(a)

$$
r=2
$$


(b)

## S-ACO Algorithm

Graph $G=(N, A) \quad, N$ : set of nodes, $A$ :set of arcs
$\tau_{i j}$ : pheromone trail on arc $(i, j)$

$$
=\text { const. , } \forall(i, j) \in A \quad \text { (at the beginning stage) }
$$

- Ant's path-searching behavior

- If an ant $k$ is located at a node $i$, then the probability of choosing $j$ as next node is

$$
p_{i j}^{k}= \begin{cases}\frac{\tau_{i j}^{\alpha}}{\sum_{l \in \mathcal{N}_{i}^{k}} \tau_{i l}^{\alpha}}, & \text { if } j \in \mathcal{N}_{i}^{k} \\ 0, & \text { if } j \notin \mathcal{N}_{i}^{k}\end{cases}
$$

$N_{i}{ }^{k}$ : neighborhood of ant $k$ when in node $i$
All nodes directly connected to node $i$ except for the predecessor of node $i$

## S-ACO Algorithm

- Pheromone update
- $k$-th ant deposits an amount $\Delta \tau^{k}$ of pheromone on arcs it has visited

$$
\tau_{i j}=\tau_{i j}+\Delta \tau^{k}
$$

<Equivalent graph model>

(a)
$\Delta \tau^{k}$ : non-increasing function of path length

(b)

$$
\Delta \tau^{k}: \text { constant }
$$

## S-ACO Algorithm

- Pheromone evaporation
- After each ant $k$ has moved to a next node, pheromone trails are evaporated by

$$
\tau_{i j} \leftarrow(1-\rho) \tau_{i j} \quad \forall(i, j) \in A \quad \rho \in[0,1]
$$

- Exponentially decreasing


## S-ACO

- Shortest Path Algorithm
- Given a directed acyclic graph $G=(N, A)$
, where $N=\{0, \cdots, G\} \quad 0$ : source (nest), G: destination (food)

```
for all ant }k
    ant position }\mp@subsup{n}{}{k}\leftarrow
    ant state sk}\leftarrow\mathrm{ forward
for all arcs (i,j),
    \tauij}\leftarrow\mp@code{const
repeat
    for all ant }k\mathrm{ ,
        ant_step(k)
    for all arcs (i,j),
    \mp@subsup{\tau}{ij}{}\leftarrow(1-\rho)\mp@subsup{\tau}{ij}{}
```

```
ant_step(k)
if n
if }\mp@subsup{n}{}{k}=0,\mp@subsup{s}{}{k}\leftarrow\mathrm{ forward
if }\mp@subsup{s}{}{k}=\mathrm{ forward,
    choose next ant position }\mp@subsup{n}{}{k}\leftarrow
    with the probability of }\mp@subsup{p}{}{k}\mp@subsup{}{ij}{
    update pheromone }\mp@subsup{\tau}{ij}{}=\mp@subsup{\tau}{ij}{}+
if s}\mp@subsup{s}{}{k}=\mathrm{ backward,
    choose next ant position }\mp@subsup{n}{}{k}\leftarrow
    with the probability of p}\mp@subsup{p}{ji}{k
    update pheromone }\mp@subsup{\tau}{ji}{}=\mp@subsup{\tau}{ji}{}+
```


## S-ACO



## Experiments with Double Bridge

- Number of ants

$$
m=1, \cdots, 512
$$

- Pheromone update


$$
\begin{aligned}
\Delta \tau^{k} & =\text { constant } & & \text { (without considering path length) } \\
& =1 / L^{k} & & \text { (with considering path length) }
\end{aligned}
$$

Table 1.1
Percentage of trials in which S-ACO converged to the long path (100 independent trials for varying values of $m$, with $\alpha=2$ and $\rho=0$ )

| $m$ | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | :--- | :--- |
| without path length | 50 | 42 | 26 | 29 | 24 | 18 | 3 | 2 | 1 | 0 |
| with path length | 18 | 14 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

## Experiments with Extended Double Bridge

- Pheromone evaporation
- Evaporation rate $\rho=\{0,0.01,0.1\} \quad \tau_{i j} \leftarrow(1-\rho) \tau_{i j} \quad \forall(i, j) \in A$
- $\rho=0$ : no evaporation
- $\rho=0.01: 10 \%$ of pheromone evaporated after 10 iterations
- $\rho=0.1: 65 \%$ of pheromone evaporated after 10 iterations
- The larger $\rho$, the faster converges to suboptimal solution




## Traveling Salesman Problem

- TSP PROBLEM

Given N cities, and a distance function d between cities, find a tour that:

1. Goes through every city once and only once
2. Minimizes the total distance.

- Problem is NP-hard
- Classical combinatorial optimization problem to test.



## Ant System (AS) for TSP

- Algorithm



## Ant System (AS) for TSP

- Tour Construction
- Probability of ant $k$, currently at city $i$, choosing a next city $j$

$$
p_{i j}^{k}(t)= \begin{cases}\frac{\left[\tau_{i j}(t)\right]^{\alpha}\left[\eta_{i j}\right]^{\beta}}{\sum_{l \in N_{i}^{k}}\left[\tau_{i k}(t)\right]^{\alpha}\left[\eta_{i l}\right]^{\beta}} \text { if } j \in N_{i}^{k} \\ 0 & \text { if } j \notin N_{i}^{k}\end{cases}
$$

$N^{k}{ }_{i}$ : feasible neighborhood of ant $k$ when being at city $i$ set of cities that ant $k$ has not visited yet
$\eta_{i j}=1 / d_{i j}$ : heuristic value priori to closer city
$d_{i j}$ : length of arc $(i, j)$
$\alpha, \beta:$ parameters
$\alpha=0, \beta>1:$ the closest city is selected
$\alpha>1, \beta=0$ : only pheromone is used
$\Rightarrow$ stagnation
$\Rightarrow$ strongly suboptimal solution


## Ant System (AS) for TSP

- Pheromone trail update

$$
\begin{array}{cc}
\tau_{i j} \leftarrow \tau_{i j}+\sum_{k=1}^{m} \Delta \tau_{i j}^{k} & , \forall(i, j) \in A \\
\Delta \tau_{i j}^{k}=\left\{\begin{array}{cc}
1 / C^{k}, & \text { if }(i, j) \in T^{k} \\
0, & \text { otherwise }
\end{array}\right.
\end{array}
$$

$T^{k}$ : tour of ant $k$, tabu

- Pheromone evaporation

$$
\tau_{i j} \leftarrow(1-\rho) \tau_{i j} \quad \forall(i, j) \in A
$$

## A simple TSP example



Iteration 1


## How to build next sub-solution?



## Iteration 2



## Iteration 3



Iteration 4


## Iteration 5



## Pheromone Update



## Ant Colony System (ACS) for TSP

- Dorigo \& Gambardella (1997) introduced four modifications in AS :

1) Different tour construction rule
2) Different pheromone trail updates

- Global
- Local


## ACS for TSP

- Tour Construction
- When located at city $i$, ant $k$ chooses a next city $j$ by the following rule

$$
j=\left\{\begin{array}{lc}
\arg \max \operatorname{argmax}_{l \in N^{k}}{ }_{i}\left\{\tau_{i j}\left[\eta_{i l}\right]^{\beta}\right\}, & \text { if } q \leq q_{o} \\
J, & \text { otherwise }
\end{array}\right.
$$

$q$ : random variable uniformly distributed in $[0,1]$
$q_{o} \in(0,1]$ : parameter
$J$ : random variable selected by the following probability $(\alpha=0)$

$$
p_{i j}^{k}(t)= \begin{cases}\frac{\left[\tau_{i j}(t)\right]^{\alpha}\left[\eta_{i j}\right]^{\beta}}{\sum_{l \in N_{i}^{k}}\left[\tau_{i k}(t)\right]^{\alpha}\left[\eta_{i l}\right]^{\beta}} & \text { if } j \in N_{i}^{k} \\ 0 & \text { if } j \notin N_{i}^{k}\end{cases}
$$

## ACS for TSP

- Tour Construction (Example)

$$
\begin{array}{ll}
\tau_{A, B}=150 & \eta_{A, B}=1 / 10 \\
\tau_{A, C}=35 & \eta_{A, C}=1 / 7 \\
\tau_{A, D}=90 & \eta_{A, D}=1 / 15
\end{array}
$$

If $q \leq q_{o}$ choose A-B (15)
else

choose
A-B with probability 15/26
A-C with probability $5 / 26$
A-D with probability 6/26

## ACS for TSP

- Global pheromone trail update
- Add and evaporate pheromone only to the best tour since trial began

$$
\tau_{i j} \leftarrow(1-\rho) \tau_{i j}+\rho \Delta \tau^{\text {best }}{ }_{i j} \quad \forall(i, j) \in T^{\text {best }}
$$

$$
\Delta \tau_{i j}^{b e s t}=1 / C^{b e s t}
$$

- Computational complexity

$$
O\left(n^{2}\right) \rightarrow O(n)
$$

## ACS for TSP

- Local pheromone update
- Remove pheromone to the arc $(i, j)$ immediately after having been crossed during tour construction

$$
\tau_{i j} \leftarrow(1-\xi) \tau_{i j}+\xi \tau_{o}
$$

$$
\xi \in(0,1) \quad, \quad \tau_{o}: \text { initial pheromone }
$$

- Tabu effect
- The arc recently visited is not desirable for the following ants
- Increase the exploration of arcs that have not been visited yet
$\Rightarrow$ reduce stagnation behavior


## ACS for TSP

- Results for a 30 cities instance

|  | best | average | std.deviation |
| :--- | :--- | :--- | :--- |
| ACS | 420 | 420.4 | 1.3 |
| Tabu-search | 420 | 420.6 | 1.5 |
| Sim. Annealing | 422 | 459.8 | 25.1 |

- Results for larger cities (best tour)

|  | ACO | Gen.Alg. | Evol.Prog. | Sim.Ann. |
| :--- | :--- | :--- | :--- | :--- |
| 50 cities | 425 | 428 | 426 | 443 |
| 75 cities | 535 | 545 | 542 | 580 |
| 100 cities | 21282 | 21761 |  |  |

## Conclusions

- ACO is a recently proposed metaheuristic approach for solving hard combinatorial optimization problems.
- Artificial ants implement a randomized construction heuristic which makes probabilistic decisions.
- ACO can find best solutions on smaller problems
- On larger problems converged to good solutions -but not the best
- In ACO Local search is extremely important to obtain good results.

