Motion Planning

Motion Planning

- Motion planning
- Finding a robot motion from a start state to a goal state that avoids obstacles in the environments and satisfies other constraints, such as joint limits or torque limits

Figure 10.1: (Left) A robot arm executing an obstacle-avoiding motion plan. The motion plan was generated using MoveIt! [180] and visualized using rviz in ROS (the Robot Operating System). (Right) A car-like mobile robot executing parallel parking.

Configuration Space

- C-space
- Motion planning 이 수행되는 configuration space

$$
\mathcal{C}=\mathcal{C}_{\text {free }} \cup \mathcal{C}_{\text {obs }}
$$

(ex) 2R Planar Arm

Figure 10.2: (Left) The joint angles of a 2R robot arm. (Middle) The arm navigating among obstacles A, B, and C. (Right) The same motion in C-space. Three intermediate points, 4,7 , and 10 , along the path are labeled.

Configuration Space

(ex) Circular Mobile Robot

(a)

(b)

Figure 10.3: (a) A circular mobile robot (open circle) and a workspace obstacle (gray triangle). The configuration of the robot is represented by (x, y), the center of the robot. (b) In the C-space, the obstacle is "grown" by the radius of the robot and the robot is treated as a point. Any (x, y) configuration outside the bold line is collision-free.

Configuration Space

(ex) Polygon Mobile Robot that Translates

Figure 10.5: (a) The configuration of a triangular mobile robot, which can translate but not rotate, is represented by the (x, y) location of a reference point. Also shown is a workspace obstacle in gray. (b) The corresponding C-space obstacle (bold outline) is obtained by sliding the robot around the boundary of the obstacle and tracing the position of the reference point.

Configuration Space

(ex) Polygon Mobile Robot that Translates and Rotates

Figure 10.6: (Top) A triangular mobile robot that can both rotate and translate, represented by the configuration (x, y, θ). (Left) The C-space obstacle from Figure 10.5(b) when the robot is restricted to $\theta=0$. (Right) The full three-dimensional C-space obstacle shown in slices at 10° increments.

Graph and Tree

- Graph
- Nodes + Edges
- Directed / Undirected
- Weighted / Unweighted
- Tree
- Graph with
- no cycle
- one parent node

Figure 10.8: (a) A weighted digraph. (b) A weighted undirected graph. (c) A tree. The leaves are shaded gray.

Graph Search - A*

- A^{*} algorithm
- Effectively finds a minimum-cost path on a graph
- Data structure

OPEN : 탐색할 노드 집합 (sorted list)
CLOSED: 탐색이 끝난 노드 집합 (list)
cost[node1, node2]: node1-> node2 이동 시 cost (matrix)
past_cost[node]: start node 부터 node 까지 소요되는 최소 cost (array)
parent[node]: node 에 대하여 최소 cost 가 발생되는 선행 node (array)

- Estimated cost
est_total_cost[node] = past_cost[node] + heuristic_cost_to_go[node]
heuristic_cost_to_go[node]: node 부터 goal 까지 소요되는 cost 추정치

Graph Search - A*

```
Algorithm \(10.1 A^{*}\) search.
    OPEN \(\leftarrow\{1\}\)
    past_cost[1] \(\leftarrow 0\), past_cost[node] \(\leftarrow\) infinity for node \(\in\{2, \ldots, N\}\)
    while OPEN is not empty do
        current \(\leftarrow\) first node in OPEN, remove from OPEN
        add current to CLOSED
        if current is in the goal set then
            return SUCCESS and the path to current
        end if
        for each nbr of current not in CLOSED do nbr: neighborhood
            tentative_past_cost \(\leftarrow\) past_cost [current] +cost [current, nbr]
            if tentative_past_cost < past_cost [nbr] then
                past_cost [nbr] \(\leftarrow\) tentative_past_cost
                parent [nbr] \(\leftarrow\) current
                put (or move) nbr in sorted list OPEN according to
                    est_total_cost [nbr] \(\leftarrow\) past_cost [nbr] +
                        heuristic_cost_to_go(nbr)
            end if
        end for
    end while
18: return FALLURE
```


Graph Search - A*

OPEN $=\{S\}$

$$
\text { OPEN }=\{D, A\} \quad \text { CLOSED }=\{S\}
$$

$$
\text { OPEN }=\{E, A\} \quad C L O S E D=\{S, D\}
$$

Graph Search-Dijkstra's Algorithm

- Dijkstra's algorithm
- A* 알고리즘의 변형: heuristic_cost_to_go[node] = 0
- Guarantees to find a minimum-cost path
- Runs more slowly than A^{*}

Motion Planning Methods

- Search space 형식에 따라 분류

1. Complete methods

- Exact representations of geometry or topology of $C_{f r e e}$
- V graph

2. Grid methods

- Discretize $C_{\text {free }}$ into a grid and search the grid for a motion
- Grid-based A*

3. Virtual potential fields

- Creates virtual potential field (forces on the robot that pull it toward the goal and push it away from obstacles)

4. Sampling methods

- Builds up a graph or tree by choosing a sample from the C space or state space
- High d.o.f motion planning
- RRT, PRM

Complete Methods

- Visibility graph (V graph)
- C-space 에서 시작점, 목표점, 장애물의 꼭지점으로 구성된 graph
- Nodes: vertices of C-obstacle
- Edges: lines between nodes that can "see" each other
(line segment between vertices dose not intersect an obstacle)
- Graph search
- Undirected weight graph
- Weight = Euclidian distance
- A* search algorithm
- 특징
- 꼭지점을 지나가는 경로 생성 \Rightarrow 충돌주의

Grid Methods

- Grid representation
- C-space 를 grid 로 분할
- 4-connected vs. 8-connected
- Euclidean distance vs. Manhattan distance

(a)

(b)

(c)

Figure 10.10: (a) A 4-connected grid point and an 8-connected grid point for a space $n=2$. (b) Grid points spaced at unit intervals. The Euclidean distance between the two points indicated is $\sqrt{5}$ while the Manhattan distance is 3 . (c) A grid representation of the C-space and a minimum-length Manhattan-distance path for the problem of Figure 10.2.

Grid Methods

- Wavefront Planner
- Score of goal: 0
- Scores of collision-free-neighbors: +1
- Breadth-first search

Grid Methods

- A^{*} grid-based path planner

6	$\begin{aligned} & \mathrm{h}=6 \\ & \mathrm{f}= \\ & \mathrm{b}=0 \end{aligned}$	$\begin{aligned} & h=5 \\ & t=1 \\ & \text { hay } \end{aligned}$	$\begin{aligned} & \mathrm{h}=4 \\ & \mathrm{f}= \\ & \mathrm{b}=0 \end{aligned}$	$\begin{aligned} & \mathrm{h}=3 \\ & \mathrm{f}= \\ & \mathrm{b}=0 \end{aligned}$	$\begin{aligned} & \mathrm{h}=2 \\ & \mathrm{f}= \\ & \mathrm{b}=0 \end{aligned}$	$\begin{aligned} & \mathrm{h}=1 \\ & \mathrm{f}= \\ & \mathrm{b}=(\mathrm{O} \end{aligned}$	$\begin{gathered} h=0 \\ \text { Goal } \end{gathered}$
5	$\begin{aligned} & h=6.4 \\ & f= \\ & b=0 \end{aligned}$	$\begin{aligned} & h * 5.4 \\ & f= \\ & \mathrm{baO} \end{aligned}$	$\begin{aligned} & \mathrm{h}=4.4 \\ & \mathrm{f}= \\ & \operatorname{lon} \theta \end{aligned}$	$\begin{aligned} & h=3.4 \\ & f= \\ & b=0 \end{aligned}$	$\begin{aligned} & h=24 \\ & f= \\ & b=0 \end{aligned}$	$\begin{aligned} & \mathrm{h}=1.4 \\ & \mathrm{f}= \\ & \mathrm{b}=(0 \end{aligned}$	$\begin{aligned} & \mathrm{h}=1 \\ & \mathrm{f}= \\ & \mathrm{b}=0 \end{aligned}$
4	$\begin{aligned} & \mathrm{h}=6.8 \\ & \mathrm{f}= \\ & \mathrm{b}=0 \end{aligned}$	$\begin{aligned} & h=58 \\ & f= \\ & b=0 \end{aligned}$	$\begin{aligned} & b=48 \\ & f= \\ & b=0 \end{aligned}$	$\begin{aligned} & \mathrm{h}=3.8 \\ & \mathrm{f}= \\ & \mathrm{b}=0 \end{aligned}$	$\begin{aligned} & h=2.8 \\ & f= \\ & b=0 \end{aligned}$	$\begin{aligned} & h=2.4 \\ & f= \\ & b=0 \end{aligned}$	$\begin{aligned} & h=2 \\ & i= \\ & b=0 \end{aligned}$
3	$\begin{aligned} & \mathrm{h}=7.2 \\ & \mathrm{f}= \\ & \mathrm{b}=0 \end{aligned}$	$\begin{aligned} & h \times 02 \\ & f= \\ & \text { bati } \end{aligned}$	$\begin{aligned} & h+3.2 \\ & i= \\ & b=0 \end{aligned}$	$\begin{aligned} & \mathrm{h}=4.2 \\ & \mathrm{f}= \\ & \mathrm{b}=0 \end{aligned}$	$\begin{aligned} & \mathrm{h}=3.8 \\ & \mathrm{f}= \\ & \mathrm{b}=0 \end{aligned}$	$\begin{aligned} & \mathrm{h}=3.4 \\ & \mathrm{f}= \\ & \mathrm{b}=0 \end{aligned}$	$\begin{aligned} & h=3 \\ & f= \\ & b=0 \end{aligned}$
2	$\begin{aligned} & \mathrm{h}=7.6 \\ & \mathrm{f}= \\ & \mathrm{b}=0 \end{aligned}$	$\begin{aligned} & h=6.6 \\ & f= \\ & b=0 \end{aligned}$	$\begin{aligned} & \mathrm{h}=5.6 \\ & \mathrm{f}= \\ & \mathrm{b}=0 \end{aligned}$	$\begin{aligned} & 15 \times 52 \\ & 1= \\ & b=0 \end{aligned}$	$\begin{aligned} & \mathrm{h}=4.8 \\ & \mathrm{f}= \\ & \mathrm{b}=0 \end{aligned}$	$\begin{aligned} & \mathrm{h}=4.4 \\ & \mathrm{f}= \\ & \mathrm{b}=0 \end{aligned}$	$\begin{aligned} & h=4 \\ & f= \\ & b=0 \end{aligned}$
1	$\begin{aligned} & h=8.0 \\ & t= \\ & t=0 \end{aligned}$	$\begin{aligned} & \mathrm{h}=7.0 \\ & \mathrm{f}= \\ & \text { Start } \end{aligned}$	$\begin{aligned} & \mathrm{h}=6.6 \\ & \mathrm{f}= \\ & \mathrm{b}=0 \end{aligned}$	$\begin{aligned} & h=6.2 \\ & f= \\ & b=0 \end{aligned}$	$\begin{aligned} & h=5.8 \\ & f= \\ & b=0 \end{aligned}$	$\begin{aligned} & \mathrm{h}=5.4 \\ & \mathrm{f}= \\ & \mathrm{b}=0 \end{aligned}$	$\begin{aligned} & \mathrm{h}=5 \\ & \mathrm{f}= \\ & \mathrm{b}=0 \end{aligned}$
t / c	1	2	3	4	5	6	7

$c(x 1, x 2)=1$
$c(x 1, x 9)=1.4$
$c(x 1, x 8)=10000$, if $x 8$ is in obstacle, x 1 is a free cell
$c(x 1, x 9)=10000.4$, if $x 9$ is in obstacle, xl is a free cell

$\mathrm{h}=6$	$h=5$	$h=1$	$\mathrm{h}=3$	$\mathrm{h}=2$	$\mathrm{h}=1$	$h=0$	18.4	[7]
	tos	f=	$f=$			$f=$	0.3	10
$\mathrm{f}=$	$t=$	$f-$	$\mathrm{f}=$	$\mathrm{f}=$	$\mathrm{f}=$	$\mathrm{f}=$	a.1	78
$\mathrm{b}=0$	$b-6)$	$b=0$	$\mathrm{b}=0$	$\mathrm{b}=0$	$\mathrm{b}=0$	$b=0$	$\frac{127}{121}$	\%e
$\mathrm{h}=6.4$	$\mathrm{h} * 5.4$	$\mathrm{h}=4.4$	$\mathrm{h}=3.4$	$\mathrm{h}=2.4$	$\mathrm{h}=1.4$	$\mathrm{h}=1$	3 mon	i
$\mathrm{f}=$	$\mathrm{f}=$	$\mathrm{i}=$	$\mathrm{f}=$	$\mathrm{f}=$	$\mathrm{f}=$	$\mathrm{f}=$		
$\mathrm{b}=0$	$b-1$	b*0	$\mathrm{b}=0$	$\mathrm{b}=0$	$\mathrm{b}=$ ()	$b=0$		
$\mathrm{h}=6.8$	h $=5.8$	$\mathrm{h}=4 \mathrm{~A}$	$\mathrm{h}=3.8$	$\mathrm{h}=2.8$	$\mathrm{h}=2.4$	$\mathrm{h}=2$		
$\mathrm{f}=$	$f=$	$\mathrm{f}=$	$\mathrm{f}=$	$\mathrm{f}=$	$f=$	$\mathrm{f}=$		
$b=0$	bee)	$\mathrm{b}=0$	$b=0$	$\mathrm{b}=0$	$b=0$	$b=0$		
$h=7.2$	A $=6.2$	$h=5 \mathrm{z}$	$\mathrm{h}=4.2$	$\mathrm{h}=3.8$	$\mathrm{h}=3.4$	$\mathrm{h}=3$		
$f=$	$f=$	f=	$\mathrm{f}=$	$\mathrm{f}=$		$\mathrm{f}=$		
$\mathrm{b}=0$	bue)	b=6	$b=0$	$\mathrm{b}=0$	$\mathrm{b}=0$	$\mathrm{b}=0$		
$\mathrm{h}=7.6$	$\mathrm{h}=6.6$	$\mathrm{h}=5.6$	$\mathrm{h}-5.2$	$\mathrm{h}=4.8$	$\mathrm{h}=4.4$	$\mathrm{h}=4$		
$\mathrm{f}=9.0$	$\mathrm{f}=7.6$	$f=7.0$	f=	$\mathrm{f}=$		$\mathrm{f}=$		
$b=(2.1)$	$\mathrm{b}(2,1)$	$\mathrm{b}=(2.1)$	$1-4$	$\mathrm{b}=0$	$\mathrm{b}=0$	$b=0$		
$\mathrm{h}=8.0$	$h=7.0$	$\mathrm{h}=6.6$	$\mathrm{h}=6.2$	$\mathrm{h}=5.8$	$h=5.4$	$\mathrm{h}=5$		
$f=90$	$\mathrm{t}=7.0$	$\mathrm{f}=7.6$	$\mathrm{f}=$	$\mathrm{f}=$	$\mathrm{f}=$	$f=$	7	
$b=(2,1)$	$b=0$	$\mathrm{b}=(2.1)$	$b=0$	$b=0$	$b=0$	$b=0$	+	

$\mathrm{h}=6$	$\mathrm{h}=5$	hama	$\mathrm{h}=3$	$\mathrm{h}=2$	$\mathrm{h}=1$	$\mathrm{h}=0$	4.8.818	[18]
$f=$			$f=$	1	1	\cdots	[13.	$\underline{18}$
$f=$	$\mathrm{f}=$	$\mathrm{f}=$	f $=$	$f=$	f=	$t=$	12.13	74
$\mathrm{b}=0$	b-i)	b=0 ${ }^{\text {a }}$	$\mathrm{b}=0$	$b=0$	$\mathrm{b}=0$	$b=0$	$\frac{146}{128}$	\%8
$\mathrm{h}=6.4$	$\mathrm{h}=3.4$	$\mathrm{h}=4.4$	$\mathrm{h}=3.4$	$\mathrm{h}=24$	$\mathrm{h}=1.4$	$\mathrm{h}=1$	111	\#10
$\mathrm{f}=$	i=	ie	$\mathrm{f}=$	$\mathrm{f}=$	$f=$	$f=$	munt	1
b*0	$\mathrm{b}=0$.	bun)	$b=0$	$b=0$	$\mathrm{b}=0$	$b=0$		
$\mathrm{h}=6.8$	$h=5.8$	hma 8	$\mathrm{h}=3.8$	$h=28$	$\mathrm{h}=2.4$	$h=2$		
$i=$	$\mathrm{f}=$	(1)	$\mathrm{f}=$	$\mathrm{f}=$	$f=$	$f=$		
$\mathrm{b}=0$	$b=0$	$b=0$	$b=0$	$\mathrm{b}=0$	$b=0$	$b=0$		
$\mathrm{h}=7.2$	1) $=62$	$\mathrm{h}=5.2$	$\mathrm{h}=4.2$	$h=3.8$	$\mathrm{h}=3.4$	$\mathrm{h}=3$		
$f=$	$f=108.2$	$f=100.6$	$f=7,0$	$\mathrm{f}=$	$\mathrm{f}=$	$\mathrm{f}=$		
$\mathrm{b}=0$	$\mathrm{b}+(3,2)$	bie(3,2$)^{\text {a }}$	$\mathrm{b}=(3,2)$	$b=0$	$b=0$	$b=0$		
$\mathrm{h}=7.6$	$\mathrm{h}=6.6$	$h=5.6$	$\mathrm{h}=52$	$\mathrm{h}=4.8$	$\mathrm{h}=4.4$	$h=4$		
$\mathrm{f}=9.0$	$\mathrm{f}=7.6$	$\mathrm{f}=7.0$	$t=106.6$	$\mathrm{f}=$		$\mathrm{f}=$		
$b=(21)$	$b=(2,1)$	$\mathrm{b}=(2,1)$	Ahor 3,2$)$	$\mathrm{b}=0$	$\mathrm{b}=0$	$b=0$		
$\mathrm{h}=8.0$	$b=78$	$\mathrm{h}=6.6$	$\mathrm{h}=6.2$	$\mathrm{h}=5.8$	$\mathrm{h}=5.4$	$\mathrm{h}=5$	et	
$\mathrm{f}=9.0$	$\mathrm{f}=7.0$	$\mathrm{f}=7.6$	$f=9.0$	$f=$	$\mathrm{f}=$	$\mathrm{f}=$	c**	
$b=(2.1)$	$\mathrm{t}=0$	$b=(2,1)$	$b=(3,2)$	$\mathrm{b}=0$	$\mathrm{b}=0$)	$b=0$	+ +	

Grid Methods

- Multi-resolution grid representation
- Reduce the computational complexity
- Subdivided by quad-tree

subdivision 1

subdivision 2 subdivision 3

original cell
subdivision 1
subdivision 2
subdivision 3

Fixed-grid: 64 cells
Mult-resolution grid: 10 cells

Grid Methods

- Grid-based path planning for a wheeled mobile robot
- Discretizations of control sets

v : linear velocity
ω : angular velocity

```
Algorithm 10.2 Grid-based Dijkstra planner for a wheeled mobile robot.
    OPEN }\leftarrow{\mp@subsup{q}{\mathrm{ start }}{}
    past_cost[\mp@subsup{q}{\mathrm{ start }}{}]\leftarrow0
    counter }\leftarrow
    while OPEN is not empty and counter < MAXCOUNT do
        current }\leftarrow\mathrm{ first node in OPEN, remove from OPEN
        if current is in the goal set then
            return SUCCESS and the path to current
        end if
        if current is not in a previously occupied C-space grid cell then
            mark grid cell occupied
            counter }\leftarrow\mathrm{ counter + 1
            for each control in the discrete control set do
            integrate control forward a short time \Deltat from current to }\mp@subsup{q}{\mathrm{ new }}{
            if the path to }\mp@subsup{q}{\mathrm{ new }}{}\mathrm{ is collision-free then
                    compute cost of the path to }\mp@subsup{q}{\mathrm{ new}}{
                place q}\mp@subsup{q}{\mathrm{ new }}{}\mathrm{ in OPEN, sorted by cost
                    parent [q}\mp@subsup{q}{\mathrm{ new }}{}]\leftarrow\mathrm{ current
            end if
            end for
        end if
    end while
    return FAILURE
```


Figure 10.15: (Left) A minimum-cost path for a car-like robot where each action has identical cost, favoring a short path. (Right) A minimum-cost path where reversals are penalized. Penalizing reversals requires a modification to Algorithm 10.2.

Virtual Potential Fields

- Potential energy from goal $\quad \mathcal{P}_{\text {goal }}(q)=\frac{1}{2}\left(q-q_{\text {goal }}\right)^{\mathrm{T}} K\left(q-q_{\text {goal }}\right)$
- Attractive force from goal

$$
F_{\text {goal }}(q)=-\frac{\partial \mathcal{P}_{\text {goal }}}{\partial q}=K\left(q_{\text {goal }}-q\right)
$$

- Repulsive potential energy from obstacle $\beta \quad \mathcal{P}_{\mathcal{B}}(q)=\frac{k}{2 d^{2}(q, \mathcal{B})}$,
- Repulsive force from obstacle

$$
F_{\mathcal{B}}(q)=-\frac{\partial \mathcal{P}_{\mathcal{B}}}{\partial q}=\frac{k}{d^{3}(q, \mathcal{B})} \frac{\partial d}{\partial q} .
$$

- Total potential \& force

$$
\begin{aligned}
& \mathcal{P}(q)=\mathcal{P}_{\text {goal }}(q)+\sum \mathcal{P}_{\mathcal{B}_{i}}(q) \\
& F(q)=F_{\text {goal }}(q)+\sum_{i} F_{\mathcal{B}_{i}}(q)
\end{aligned}
$$

- Velocity command

$$
\dot{q}=F(q)
$$

Virtual Potential Fields

Figure 10.21: (Top left) Three obstacles and a goal point, marked with a + , in \mathbb{R}^{2}. (Top right) The potential function summing the bowl-shaped potential pulling the robot to the goal with the repulsive potentials of the three obstacles. The potential function saturates at a specified maximum value. (Bottom left) A contour plot of the potential function, showing the global minimum, a local minimum, and four saddles: between each obstacle and the boundary of the workspace, and between the two small obstacles. (Bottom right) Forces induced by the potential function.

Sampling Methods

- RRT algorithm
- Rapidly exploring random trees
- Single-query planning in C-space or state space
- Good for complex motion constraints or high d.o.f systems
- Not optimal motion

```
Algorithm 10.3 RRT algorithm.
    initialize search tree \(T\) with \(x_{\text {start }}\)
    while \(T\) is less than the maximum tree size do
        \(x_{\text {samp }} \leftarrow\) sample from \(\mathcal{X}\)
        \(x_{\text {nearest }} \leftarrow\) nearest node in \(T\) to \(x_{\text {samp }}\)
        employ a local planner to find a motion from \(x_{\text {nearest }}\) to \(x_{\text {new }}\) in
            the direction of \(x_{\text {samp }}\)
        if the motion is collision-free then
            add \(x_{\text {new }}\) to \(T\) with an edge from \(x_{\text {nearest }}\) to \(x_{\text {new }}\)
            if \(x_{\text {new }}\) is in \(\mathcal{X}_{\text {goal }}\) then
                return SUCCESS and the motion to \(x_{\text {new }}\)
            end if
        end if
    end while
    return FAILURE
```

x : state
(ex) configuration, velocity,

Sampling Methods

- Tree expansion

- Local path planner
- Straight-line planner: system without motion constraints
- Discretized controls planner: system with motion constraints
- Determine $x_{n e w}$ from $\dot{x}=f(x, u)$ and Δt
- Wheeled robot planner: Reeds-Shepp curves

Sampling Methods

(Ex) Rigid robot

(Ex) Car-like robot

Sampling Methods

- RRT*
- Continually rewires the search tree to ensure that it always encodes the shortest path from $x_{\text {start }}$ to each node in the tree.

```
Algorithm 10.3 RRT algorithm.
    initialize search tree \(T\) with \(x_{\text {start }}\)
    while \(T\) is less than the maximum tree size do
        \(x_{\text {samp }} \leftarrow\) sample from \(\mathcal{X}\)
        \(x_{\text {nearest }} \leftarrow\) nearest node in \(T\) to \(x_{\text {samp }}\)
        employ a local planner to find a motion from \(x_{\text {nearest }}\) to \(x_{\text {new }}\) in
            the direction of \(x_{\text {samp }}\)
        if the motion is collision-free then
            add \(x_{\text {new }}\) to \(T\) with an edge from \(x_{\text {nearest }}\) to \(x_{\text {new }} \longrightarrow\)
            if \(x_{\text {new }}\) is in \(\mathcal{X}_{\text {goal }}\) then
            return SUCCESS and the motion to \(x_{\text {new }}\)
            end if
        end if
    end while
    return FAILURE
```


Sampling Methods

- RRT*

Figure 10.19: (Left) The tree generated by an RRT after 5,000 nodes. The goal region is the square at the top right corner, and the shortest path is indicated. (Right) The tree generated by RRT* after 5,000 nodes. Figure from [67] used with permission.

