Motion Planning

Motion Planning

» Motion planning
— Finding a robot motion from a start state to a goal state that avoids
obstacles in the environments and satisfies other constraints, such as

joint limits or torque limits

Figure 10.1: (Left) A robot arm executing an obstacle-avoiding motion plan. The
motion plan was generated using Movelt! [150] and visualized using rviz in ROS (the
Robot Operating System). (Right) A ear-like mobile robot executing parallel parking.

Configuration Space

« (C-space
— Motion planning 0| = &[= configuration space

C = Cfree U Cobs

(ex) 2R Planar Arm

end

2T

Figure 10.2: (Left) The joint angles of a 2R robot arm. (Middle) The arm navigating
among obstacles A, B, and C. (Right) The same motion in C-space. Three intermediate
points, 4, 7, and 10, along the path are labeled.

Configuration Space

(ex) Circular Mobile Robot

[
s

(a) (b)

Figure 10.3: (a) A circular mobile robot (open circle) and a workspace obstacle
(gray triangle). The configuration of the robot is represented by (z.y). the center
of the robot. (b) In the C-space, the obstacle is “grown” by the radius of the robot

and the robot is treated as a point. Any (z,y) configuration outside the bold line is
collision-free,

Configuration Space

(ex) Polygon Mobile Robot that Translates

=
s

Figure 10.5: (a) The configuration of a triangular mobile robot, which can translate
but not rotate, is represented by the (r, y) location of a reference point. Also shown is
a workspace obstacle in gray. (b) The corresponding C-space obstacle (bold outline)
is obtained by sliding the robot around the boundary of the obstacle and tracing the
position of the reference point.

Configuration Space

(ex) Polygon Mobile Robot that Translates and Rotates

Figure 10.6: (Top) A triangular mobile robot that can both rotate and translate, rep-
resented by the configuration (z, y, #). (Left) The C-space obstacle from Figure 10.5(b)
when the robot is restricted to # = 0. (Right) The full three-dimensional C-space ob-
stacle shown in slices at 10” increments.

Graph and Tree

« Graph
— Nodes + Edges
— Directed / Undirected
— Weighted / Unweighted

 Tree
— Graph with

no cycle
* one parent node

2.5

/ !

Fpio « po
3

/8

(a) (b)

Figure 10.8: (a) A weighted digraph. (b) A weighted undirected graph. (¢) A tree.
The leaves are shaded gray.

Graph Search — A*

« A* algorithm
— Effectively finds a minimum-cost path on a graph

« Data structure
OPEN : EAM2 =& &3 (sorted list)
CLOSED: 20| £ =& gl (list)
cost[node1, node2]: node1->node2 O|& Al cost (matrix)
past_cost[node]: start node £E node 7HX| 22 %|= %[cost (array)
parent[node]: node O CHSEO] X[cost 7t &= M3 node (array)

« Estimated cost
est_total_cost[node] = past_cost[node] + heuristic_cost_to_go[node]

heuristic_cost_to_go[node]: node £ E goal 7tX| &R &|[= cost FEX]

Graph Search — A*

Algorithm 10.1 A* search.

1: OPEN « {1}

2: past_cost[1] «+ 0, past_cost[node] + infinity for node € {2,... N}

3: while OPEN is not empty do

4: current + first node in OPEN, remove from OPEN

5. add current to CLOSED

6: if current is in the goal set then

T: return SUCCESS and the path to current

8 end if

9: for each nbr of current not in CLOSED do nbr: neighborhood

10: tentative_past_cost + past_cost[current]+cost[current,nbr]

11: if tentative past_cost < past_cost[nbr] then

12: past_cost[nbr] + tentative_past_cost

13: parent [nbr] < current

14: put (or move) nbr in sorted list OPEN according to
est_total_cost[nbr] + past_cost[nbr] +

heuristic_cost_to_go(nbr)
15: end if

16: end for
17: end while

18: return FAILURE

Graph Search — A*

OPEN = {F, A, B} CLOSED = {S, D, E}

OPEN = {D, A} CLOSED = {S}

OPEN = {G, A, B} CLOSED = {5, D, E, F}

OPEN = {E, A} CLOSED = {S, D} "

Graph Search-Dijkstra’s Algorithm

Dijkstra’s algorithm

— A* 22| F9| HH: heuristic_cost_to_go[node] = 0
— Guarantees to find a minimum-cost path

— Runs more slowly than A*

11

Motion Planning Methods

« Search space @Al0f 2} 257

1. Complete methods
— Exact representations of geometry or topology of Cy
— V graph

2. Grid methods

— Discretize Cfpe into a grid and search the grid for a motion
— Grid-based A*

3. Virtual potential fields

— Creates virtual potential field (forces on the robot that pull it toward the goal and
push it away from obstacles)

4. Sampling methods

— Builds up a graph or tree by choosing a sample from the C space or state space
— High d.o.f motion planning
— RRT, PRM

Complete Methods

« Visibility graph (V graph)
— C-space O|M AIZHE, =2, Zoi=2| TX|EH2= 7 & graph
« Nodes: vertices of C-obstacle
« Edges: lines between nodes that can “see” each other
(line segment between vertices dose not intersect an obstacle)
« Graph search

— Undirected weight graph
« Weight = Euclidian distance

o Vb \Y
start goa —
e« EX|
-1 o (a) (b) (c)
- EXEE XL7t= 82 44

ﬁ
-~ 5550

(d) (e) (f)

Grid Methods

« Grid representation
— C-space & grid 2 =€
4-connected vs. 8-connected
— Euclidean distance vs. Manhattan distance

27 [Hgoals
. . 0
4-connected = C\\}\Fa 0, |
v s : I o
Manhattan
8-connected 0 msltﬁ,l
0 # 2m
(a) (b) (c)

Figure 10.10: (a) A 4-connected grid point and an 8-connected grid point for a space
n = 2. (b) Grid points spaced at unit intervals. The Euclidean distance between the
two points indicated is v/5 while the Manhattan distance is 3. (¢) A grid representation
of the C-space and a minimum-length Manhattan-distance path for the problem of
Figure 10.2.

14

Grid Methods

Wavefront Planner

— Score of goal: 0

— Scores of collision-free-neighbors: +1
— Breadth-first search

|

e | G | B3| G2) e
PN L R i o B B
b= |2 =) k2| 2

|

15

Grid Methods

 A* grid-based path planner

by g he h =2 ho= i h =
n - - = f= L=
Ve > be() ;({Oal
I O o
=t h=14 h
5 = f= f- i
be) be() x9 x2, |x3 c(x1,x2)=1
Bk M L, P R S S ‘ =
b he24 | he=2 | c(xl,x9)=14
4 = f= | = N\,
2 K A . .
R 5§ R [| 8 x8, |[x1' 7|x4 c(x1, x8) = 10000, if x8 is in
- h=34 | h=3 —— —_—t .
5 i poh /1| obstacle, x1 is a free cell
b b=() Py ~ ‘ . .
i — / =
75 | hett | hes g E R R x7 p X6 | x5 . c(x1,x9) 19000.4. if X9 is in
2| f= f = f= f = ’ v obstacle, x1 is a free cell
bt b=() |y b=() | b=
hef0 | ho?70 | hett | 62 | he38 | he54 h =5
1 f= { = | = f= = f= {»
- SMart | . . - b=() =
i 2 | 4 b 7
h= h=2 h= h= | 28118 h= h ={) +
f= = [= f= j = f=- & “’t Iy
b=(b=() b=() by * . b= b=() +
h=34 | h=24 | h=14 | h=1 | o= =14 | h=1 | ilse
= {= = f= | = [=
b=() b=() b=() ‘ be b=()
Bed8 | he2B | he24 | h=2 1=24 | h=2
{= f= = {= = f=
b=() b=() l""(‘l o= ¢ be=()
h =7.2 he=38 | h=34 | he=3 =34 | h=3
f= f= | = f= §= {=
b=() b=() b=() | b=(b= be=()
h=76 | h=hé | h=s6 he=s8 | h=i4 ‘ h =4 he76 | h=66 | =56 h=48 | h=14 | h=4
f=9.0 1 f=76 | 1=70 f= f= f= =90 =76 IS0 = f=
b=21) | bR1) | b=(21) b=() b=() b=() b=(2.1) | b=(21) EBsEXT] b bw()
he80 FNSZ0| hets | he62 | h=58 | h=54 | h=3 h=80 W= | k=66 h=38 | h=34 | h=5
f=00 |20 =76 | = (= f= f= (=90 | =70 | (=76 - f=
be(2,1) [ERSQES] b=(21) | b= b=() b=() b b=(2.1) |0 b=(2,1) be b=()

original cell

Grid Methods

Multi-resolution grid representation
— Reduce the computational complexity
— Subdivided by quad-tree

subdivision 1

subdivision 2 subdivision 3

b L

original cell
subdivision 1
subdivision 2

subdivision 3

Fixed-grid: 64 cells
Mult-resolution grid: 10 cells

17

Grid Methods

« Grid-based path planning for a wheeled mobile robot
— Discretizations of control sets

v: linear velocity
w : angular velocity

unicycle diff-drive robot car

Algorithm 10.2 Grid-based Dijkstra planner for a wheeled mobile robot.

1: OPEN +— {@start }

2: past_cost[gsare] — 0

3: counter + 1

4: while OPEN is not empty and counter < MAXCOUNT do

5. current <« first node in OPEN, remove from OPEN

6. if current is in the goal set then

T: return SUCCESS and the path to current

8 end if

9: if current is not in a previously occupied C-space grid cell then

10: mark grid eell occupied

11: counter <+ counter + 1

12: | for each control in the discrete control set do |

13: integrate control forward a short time At from current to guew |

14: i if the path LO (new is collision-free then i Figure 10.15: (Left) A minimum-cost path for a car-like robot where each action has
15: 3 compute cost of the path t0 Quew i identical cost, favoring a short path. (Right) A minimum-cost path where reversals
16: i plaec Jnew in OPEN, sorted]’)}_-‘ COST i are penalized. Penalizing reversals requires a modification to Algorithm 10.2.
T parent [gnew] ¢ current i

18: + end if

19: | end for i
20: endif
21: end while 18

22: return FAILURE

Virtual Potential Fields

. 1 1
Potential energy from goal Peou(9) = 5(a — dzoal) " K (a — gzon)

— Attractive force from goal Flon(q) = _azg;a] — K (qgon —)
. . k
Repulsive potential energy from obstacle g Ps(9) = 5800 By
. JdPn ko od
— Repulsive force from obstacle Fsla) =—3" = BB o

Total potential & force

p(gj = pgc»al('?) + Z pﬁg (Q}
F(q) = Faom(q) + Y _ Fs.(q)

Velocity command
q=F(q)

19

Virtual Potential Fields

Figure 10.21: (Top left) Three obstacles and a goal point, marked with a +, in R2.
(Top right) The potential function summing the bowl-shaped potential pulling the
robot to the goal with the repulsive potentials of the three obstacles. The potential
function saturates at a specified maximum value. (Bottom left) A contour plot of the
potential function, showing the global minimum, a local minimum, and four saddles:
between each obstacle and the boundary of the workspace, and between the two small
obstacles. (Bottom right) Forces induced by the potential function.

global minimum
local minima

20

Sampling Methods

RRT algorithm

— Rapidly exploring random trees

— Single-query planning in C-space or state space
— Good for complex motion constraints or high d.o.f systems
— Not optimal motion

x . state
Algorithm 10.3 RRT algorithm. (ex) configuration, velocity,
1: mmitialize search tree 7" with @giart
2: while T" 1s less than the maximum tree size do
3: Zsamp + sample from X’ £
4: Znearest ¢ nearest node in 7' to Tsamp H / XHQW
5. employ a local planner to find a motion from x ., eet 10 Tpew 1N —_——
the direction of zsamp t e
6: if the motion is collision-free then X Xsamp
7: add zpew to T with an edge from Zpearest 10 Tnew near
8: if Tpew 15 In Appal then XSZ‘&‘!‘Z‘
0: return SUCCESS and the motion to z,.,,
10: end if
11: end if

12: end while
13: return FAILURE

21

Sampling Methods

Tree expansion

- s

Local path planner
— Straight-line planner: system without motion constraints

— Discretized controls planner: system with motion constraints
« Determine x,., from X = f(x,u) and At

— Wheeled robot planner: Reeds-Shepp curves

22

Sampling Methods

(Ex) Rigid robot

(Ex) Car-like robot

23

Sampling Methods

 RRT*

— Continually rewires the search tree to ensure that it always encodes
the shortest path from x4+ to each node in the tree.

Algorithm 10.3 RRT algorithm.

1: initialize search tree T with Zciart
2: while T 1s less than the maximum tree size do
31 ZTeamp + sample from A

4: Tnearest < nearest node in T' to Teamp
5. employ a local planner to find a motion from # . rest 10 Tpew 1N
the direction of xgsamp
6: if the motion is collision-free then Add a node after testing of all the nodes x € y,car
7 add zpew to T with an edge from Zpearest 10 Tnew '—» 1) collision-free
8: I Tnew 15 1N Agoal then _ 2) Minimizes the total cost of the path from x4,
9: return SUCCESS and the motion to @, .
10: end if
11: end if

12: end while
13: return FAILURE

24

Sampling Methods

RRT*

Figure 10.19: (Left) The tree generated by an RRT after 5,000 nodes. The goal
region is the square at the top right corner, and the shortest path is indicated. (Right)
The tree generated by RRT* after 5,000 nodes. Figure from [07] used with permission.

25

