
Why are Some Problems
Difficult to Solve ?

1. SAT (satisfiability problem)
– Boolean 식을 TRUE 로 만드는 변수를 찾는 문제

(ex) Find  ( = 1, … , 100)
s.t.   =TRUE
where  = ( ∨ ̅ ∨ ) ∧ (̅ ∨ ) ∧ ⋯ ∧ ( ∨ ̅ ∨  ∨ ̅)

– Search space S
|S| = 2  = 100 ⇒ 2 ≈ 10

1000 strings / sec → 15 billion years (150억년)
– Evaluation Function

해의 worse / better 를 판단하기 어려움

Some Problems

2

Some Problems
2. TSP (travelling salesman problem)

– 모든 도시를 한번씩 방문하고 돌아오는 순서 결정 문제
– 최소 시간 or 최단 거리

• Symmetric TSP:  ,  = (, )
• Asymmetric TSP:  ,  ≠ (, )

– Search space  = !2 =  − 1 !2
n=6 → 60
n=7 → 360
n=10 → 181,000
n=20 → 10,000,000,000,000,000
n=50 → 10

– Evaluation function
해의 worse / better 를 판단할 수 있음

3

Some Problems

3. NLP (nonlinear programing problem)
– 비선형 함수의 최대/최소 값을 찾는 문제
(ex) maximize G2(x)

– Search space
각 를 0.000001 단위로 분할 = 10
n=50 → 10

– Evaluation function
해의 worse / better 를 판단할
수 있음

4

Modeling the Problem

• Problem → Model → Solution

• Car production schedule problem
– n 개의 color 를 painting
– Cost of switching

Yellow -> black: 30, black -> yellow: 80
Yellow -> Green: 50, ……

– Find a job sequence to minimize the total cost of switching

☞ n-city asymmetric TSP

5

Modeling the Problem

• Transportation problem
– n warehouses (source)
– k distribution center (destination)
–  : transportation cost between warehouse  and destination

center  ( = 1, ⋯ , ,  = 1, ⋯ , )
: quantity of supplies

– Find quantity of supplies to minimize the total transportation
cost

☞ NLP

6

 : quantity from source  to
destination 

Modeling the Problem

• Transportation Problem
– Approximation  = 2.66 + 8.25
☞ LP

• Two approaches
1) Problem →    → (  )
2) Problem →    → (  )

a: approximated, p: precise

– 일반적으로 2) 가 바람직한 접근 방법

7

Basic Concepts

Search Problem

• Search Problem (Optimization Problem)
Given a search space  and its feasible part  ⊆ ,
find  ∈  such that  ≤  ()
for all  ∈ .

☞  : global solution

9

Neighborhoods and Local Optima

• Neighborhood ()
Set of all points of the search space  that are close in some
measurable sense to the given point 

(ex) NLP   = { ∈  ∶  ,  ≤ } ,  = ∑ ( − ) (Euclidean distance)

10

Neighborhoods and Local Optima

• Neighborhood ()
(ex) TSP : 2-swap mapping: 3-2-4-1-5(): 2-3-4-1-5

4-2-3-1-5
1-2-4-3-5
5-2-4-1-3
3-4-2-1-5
3-1-4-2-5
3-5-4-1-2
3-2-1-4-5
3-2-5-1-4
3-2-4-5-1

n city TSP: () neighbors

11

Neighborhoods and Local Optima

• Neighborhood ()
(ex) SAT : 1-flip mapping: 01101101(): 11101101

00101101
01001101
01111101
01100101
01101001
01101111
01101100

12

Neighborhoods and Local Optima
• Local optima   ≤  ()

for all  ∈ ()
☞  : local solution (local optimum)

• Local search strategy
Locate solutions within a neighborhood of the current point that
have better evaluations
(ex) minimize   = 

• Size of the neighborhood vs. efficiency of the search
– Smaller size of neighborhood

→ quick search, local optimum
– Larger size of neighborhood

→ better decisions, huge computation

13

Hill-Climbing Methods

• Hill-climbing procedure
– Start from a single point (current point)
– Improve the current point by searching the neighborhood
– Terminates if no further improvement

14

: number of iterations : 해의 개선 여부 : 최적해v: current pointv: new point

Hill-Climbing Methods

• Weakness
– Terminates at solutions that are only locally optimal
– Depends on the initial configuration
– Not possible to provide an upper bound for computation time

15

