
로봇공학 (Robotics)

박태형 robotics.cbnu.ac.kr 교육관 313 / 316 호

교재

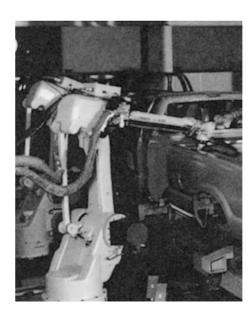
강의개요

- 개요 : 1 주
- 위치해석 (position analysys): 2 주
- 기구학 (kinematics): 2 주
- 동력학 (dynamics): 1 주
- 궤적 계획 (trajectory planning) : 1 주
- 제어 (actuator and control) : 3 주
- 위치 인식 (localization) : 2 주
- 경로 계획 (path planning): 2 주

평가

- 시험: 70%
 - 중간 (35%)
 - 기말 (35%)
- 보고서/프로젝트: 30%
 - 문제풀이
 - MATLAB / C or C++

로봇의 역사


- ▲1921년 체코의 극작가 카렐 차펙 (Karel Capek)의 희곡 '로섬의 유니버설 로봇 (Rossum's Universal Robots)'에 서 로봇이라는 용어가 처음으로 등장. 어원(語源)은 체코어로 힘겨운 노역을 뜻하는 '로보타(robota)'.
- ▲1941년 SF작가 아이작 아시모프가 최초로 로보틱스(robotics·로봇공학) 라는 용어 사용.
- ▲1956년 조지 데볼과 조셉 엥겔버거, 최초의 로봇회사인 유니메이션 (UNIMATION) 설립.
- ▲1962년 제너럴 모터스(GM) 뉴저지 공장 생산라인에 최초의 산업용 로봇 유니매이트(UNIMATE) 배치.
- ▲1969년 스탠퍼드 대학빅터 샤인먼 교수 최초의 로봇팔인 스탠퍼드암 (Stanford Arm) 제작.
- ▲1973년 신시내티 마이크론이 마이크로 컴퓨터에 의해 작동하는 최초의 산업용 로봇 T3 상용화 및 출시.
- ▲1976년 우주선 바이킹 1, 2호 탐사 작업에 로봇팔 사용.
- ▲1997년 나사 화성탐사선 패스파인더 화성에 착륙. 탐사로봇 소저너 로버 화성 탐사에 나서 화성 및 다른 행성들의 사진 지구로 전송.
- ▲1997년 혼다 10년간의 극비 작업끝에 인간처럼 걷고 계단을 오르는 휴머노이드 로봇 P3공개.
- ▲2000년 혼다 차세대 휴머노이드 로봇 아시모 공개.
- ▲2001년 소니 로봇 강아지 아이보 2세대 출시.

로봇의 정의

- 로봇 (Robot, New Definition by ISO/CD 8373)
 - 원하는 작업을 수행하기 위하여 주변을 동작하며, 어느 정도의 자율성을 가진, 2축 이상 프로그램이 가능한 구동기계
 - 주변을 동작 (moving around its environment)
 - 어느 정도의 자율성 (a degree of autonomy)
 - 2축 이상 프로그램이 가능한 (programmable in two or more axes)

Robot = Programmable Manipulator or Vehicle

로봇의 구분-구조

- 매니퓰레이터 (Manupulator)
 - 사람의 팔 (Arm) 에 해당하는 다관절 형태의 기구
 - 기구부와 제어부가 분리되어 있고 전선으로 연결되어 있음

그림 1.1 = 머니퓰레이터와 제어기(현대중공업 제공)

- 이동로봇 (Mobile Robot)
 - 바퀴 또는 다리 구조에 의하여 자율이동이 가능한 기구
 - 기구부와 제어부가 일체형

그림 1.20 = 오락 로봇(제니보, 다사로봇 제공)

로봇의 구분 - 용도

- 제조용 로봇
 - 자동차 제조: 용접, 도장, 이송 등
 - 전자 제조: 반도체/디스플레이, 전자 조립, 검사 등
 - 건설, 조선 등
- 서비스 로봇
 - 전문 서비스 로봇
 - 의료, 군사
 - 재난구조, 원전
 - 우주, 심해 탐사 등
 - 개인 서비스 로봇
 - 애완용, 청소
 - 경비, 가정교사
 - 재활보조 등

로봇의 구분 - 용도

개인 서비스 로봇

전문서비스 로봇

제조업용 로봇

인간 생활 지원/ 서비스/오락/ 교육용 로봇 극한환경에서의 작업용 로봇/ 필드운용 로봇 산업현장에서 생산시스템의 일부로 사용되는 로봇

청소로봇

Electrolux

iRobot

Eureka

Karcher

Dyson

LG 전자

한울로보틱스

Hochschule fur Gestaltung FH Robosoft

Hefter

퍼스널 로봇

NEC

미쯔비시

iRobot

RoboScience

우리기술

유진로보틱스

삼성전자

삼성전자

조이메카

안내, 경비 로봇

Active Media ROBOTICS

Fraunhofer IPA

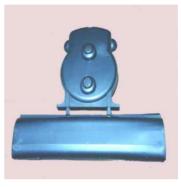
Fraunhofer IPA

우리기술

조이메카

Cybermotion

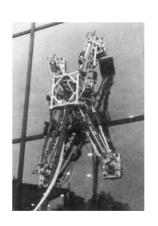
Tmsuk


벽 청소 로봇

Smart Robotics

Active Media ROBOTICS

Robotics Research Institute of HIT


SkyBot

Fraunhofer IFF

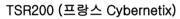
Fraunhofer IFF

Tokyo Institute of Technology

Institut fur Angewandte Forschung

군사용 로봇

GSR TDB GTOV MPRS



프레데터 글로벌 호크 X-45 MSSMP

재난구조 로봇

ANDROS MARK V (미국 Remotec)

Rainbow 5 (도쿄 소방청)

원격소화로봇 (오사카 소방국)

원자력 로봇 (원자력연구소)

ROBHAZ(KIST)

Shrimp (스위스, EPFL)

Octopus (스위스, EPFL)

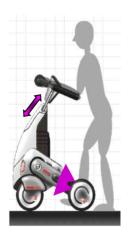
의료 복지 로봇

Robotic Wheelchair(KAIST)

PAM-AID

Hitachi

Nursebot


Harunobu

보행 도우미 로봇

iBOT-3000

보행보조로봇

Smart Car

Outdoor mobile robots

로봇산업의 변화

1980년대

제조용 로봇

1990년대

응용 전환기

2000년 이후

서비스 로봇

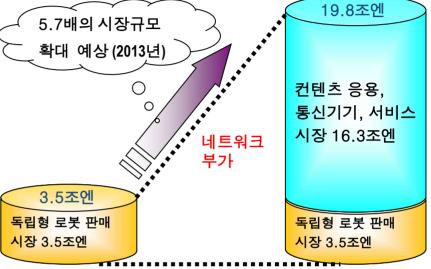
제조용 로봇 시장 성장

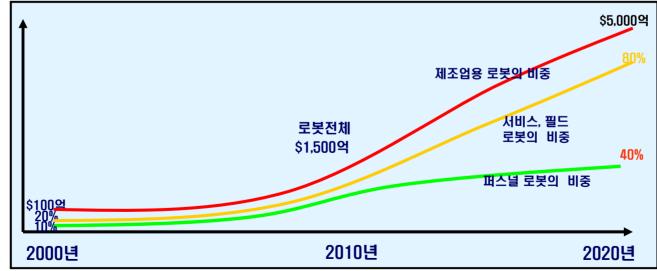
노동집약적 산업의 발달 → 로봇의 생산현장 투입

자동차나 전자산업 등

제조용 로봇 시장 성숙

제조용 로봇 시장의 정체 → 새로운 분야의 로봇연구 진전


서비스 로봇 시장의 형성


로봇 시장 전망

구 분		예상 시장규모	
		2010년	2020년
세계 시장규모(억불)		1,500	5,000
한국 시장 규모 (조원)	제조업용 로봇	4	40
	서비스로봇	6	60
	Л	10	100

[→] IFR World Robotics 2002, 21C FA Vision, 2002, 국내정보산업편람, 2003

(출처 : 일본 총무성 자료 – Network robot의 실현을 향해서[2003])

자료: IFR UN-ECE, World Robotics 2000, 미쯔비시 연구소, 21세기 기술과 산업(1999. 4)

해외동향

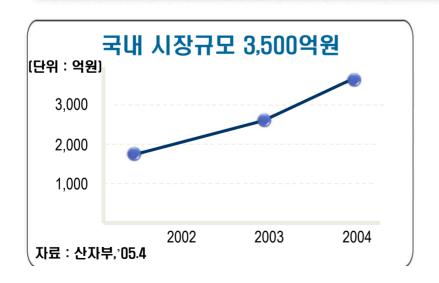
일본

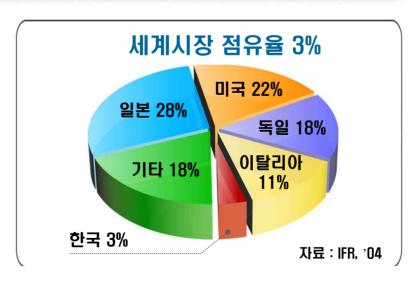
- ☞세계 1위 로봇기술 강국
- ◉제조업/퍼스널 로봇 중심
- ◉부품기술 선도
- Fanuc, Sony 등 대기업 대거 참여
- 'Made in Japan' 7대 성장산업 추진

미국

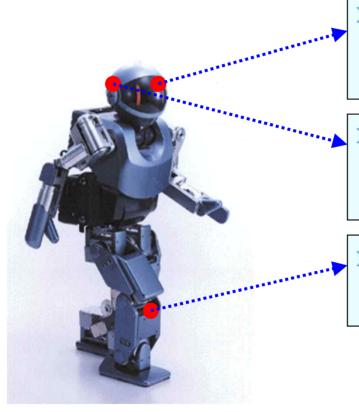
- ☞ 세계 2위 로봇기술 강국
- 전문서비스용 로봇 중심 (국방)
- ◎ 인공지능, 원천기술 선도
- ⊚ 국가 과제별 지원 (약 5억불/년)

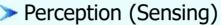
EU


- EU: 세계 3위 로봇기술 강국
- ☞ 제조업용 로봇 중심
- 증 ABB사(스웨덴) 매출 세계 1위


국내동향

세계 속의 한국위치


세계 6위 로봇 시장 제조업용 중심이나 서비스용 매출 증가 로봇 시스템 · 응용 기술 확보 대기업 13개, 중소기업 100여개 성장동력사업 추진



로봇의 핵심기술

- 오감 (시각, 청각, 촉각, 미각, 후각)
- 위치, 속도, 힘 측정
- Localization
- Cognition (Intelligence)
 - IT(정보), BT(지능, 감성)
 - 인지, 적응, 학습, 진화
 - Communication
- > Manipulation (Motion)
 - Actuators, Control
 - Mobility, Navigation

- > 인간 사회 공존 능력
 - Interaction
 - Safety

로봇기술의 특징 및 발전방향

특 징	발 전 방 향		
1. 종합기술	응용확대: 모든 곳에서 적용 가능, 인간과 결합/협력 확대 기술확대: 학제적 → 업제적 결합 시장확대: 양적 폭발에 대한 준비를 하고 있는 중임		
2. System & Solution 기술	생산기술로서의 역할 Manufacturing: Cell → Line → Factory → Minifactory and One-Cell Factory Automation: Fixed → Programmable → Flexible → Human in a system 로봇에 대한 인식 전환: 범용 → 전용 새로운 제품: Micro/Nano/Bio - 기존기술의 한계 → New actuator and Mechanism 새로운 환경: Clean, Vacuum, High Temp, Rugged, Unstructured …		
3. 인간을 지향	작업/환경으로부터 인간을 보호 → 인간공존 환경으로 진출 직립, 지능, 감성을 통해 인간화 가속 새로운 시장(Personal Aid - Entertainment, Sports 등)으로 진출		
4. 컴퓨터 기술이 중요	IT 발전의 영향을 받아 빠르게 성장할 것임 - IT 발전의 가장 큰 열매 중의 하나. 제어기의 보편화 (PC Based, Microprocessor based) S/W와 주변장치의 급속한 발전		

로봇의 미래 - CMU

2010년 1세대 로봇

- 프로세싱능력 :3000MIPS
- 지능수준:도마뱀 (혼자서 길을 찾을 수 있고 청소·배달은 물론 공장에서 더욱 진일보한 작업을 수행하게 된다.)
- ※ MIPS(million of instructions per second·초당 100만개의 명령어를 실행하는 능력)

2020년 2세대 로봇

- 프로세싱 능력:10만MIPS
- 지능수준:생쥐 (학습을 통해 일을 배울 수 있고 스스로의 수행능력을 개선할 수 있게 된다. 1세대 로봇과 같은 작업들을 수행하지만 더 많은 융통성을 지니게 되고 작업 결과도 신뢰할 수 있다.)

2030년 3세대 로봇

- 프로세싱 능력:300만 MIPS
- 지능수준:원숭이 (각 사물의 용도에 대해 이해하게 되고, 생명체를 구분할 수 있다. 새로운 작업에 앞서 시뮬레이션을 통해 준비를 하게 되고, 주위 사람들의 기분을 읽을 수 있다.)

2040년 4세대 로봇

- 프로세싱 능력:1억MIPS
- 지능수준:인간 (인간처럼 말을 할 수있고 이해할 수 있게 되며 독창적 사고가 가능하다. 자신의 행위결과를 예측할 수도 있다. 인간과 같은 수준 혹은 그 이상의 추론능력을 지닌다.)

2050년 로보 사피엔스 출현

인간을 추월해 지구의 주인이 된다. 로봇은 소프트웨어로 만든 인류의 정신적 유산, 이를테면 지식·문화·가치관을 모두 물려 받게 된다. 이때의 로봇은 지혜를 가진 로봇, 즉'로보 사피엔스'라고 말한다.